South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 1 (2020), pp. 189-206

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

STUDY ON GROWTH OF k-ITERATED ENTIRE FUNCTIONS

Dibyendu Banerjee and Sumanta Ghosh*

Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, INDIA

E-mail: dibyendu192@rediffmail.com

*Ranaghat P. C. High School Ranaghat-741201, Nadia, West Bengal, INDIA

E-mail: sumantarpc@gmail.com

(Received: Sep. 08, 2019 Accepted: Feb. 21, 2020 Published: Apr. 30, 2020)

Abstract: Considering k entire functions, we study growth of k-iterated entire functions to generalise some earlier results.

Keywords and Phrases: Growth, iteration, entire function.

2010 Mathematics Subject Classification: 30D35.

1. Introduction

Let f(z) and g(z) be two transcendental entire functions defined in \mathbb{C} . We know [2] that $\lim_{r\to\infty}\frac{T(r,f\circ g)}{T(r,f)}=\infty$ and $\lim_{r\to\infty}\frac{T(r,f\circ g)}{T(r,g)}=\infty$. Lahiri and Datta [7] investigated comparative growth properties of $\log T(r,f\circ g)$ and T(r,g) together with that of $\log \log T(r,f\circ g)$ and $T(r,f^{(l)})$. After this, Banerjee and Dutta [1] considering two functions f(z) and g(z) and following Lahiri and Banerjee [4] formed relative iterations and studied the growth properties of iterated entire functions.

In this paper we consider k entire functions $f_1(z)$, $f_2(z)$, $f_3(z)$, ..., $f_k(z)$ and form the iteration [defined below] to generalise the results of Banerjee and Dutta [1].